Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Andreas Gutzmann, Christian Näther and Wolfgang Bench*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Correspondence e-mail:
wbensch@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(S-P)=0.007 \AA$
R factor $=0.041$
$w R$ factor $=0.104$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{Cs}_{3} \mathrm{Hf}_{\mathbf{2}}\left(\mathrm{P}_{\mathbf{2}} \mathrm{S}_{7}\right)_{\mathbf{2}}\left(\mathrm{PS}_{4}\right)$

The first quaternary hafnium thiophosphate, tricaesium dihafnium pentaphosphorus octadecasulfide, $\mathrm{Cs}_{3} \mathrm{Hf}_{2} \mathrm{P}_{5} \mathrm{~S}_{18}$ was synthesized by reacting HfS_{2} with an in situ formed melt of $\mathrm{Cs}_{2} \mathrm{~S}_{3}, \mathrm{P}_{2} \mathrm{~S}_{5}$ and S . The crystal structure is composed of a two-dimensional anionic $\left[\mathrm{Hf}_{2} \mathrm{P}_{5} \mathrm{~S}_{18}\right]^{3-}$ layer and intervening Cs^{+}cations. Each of the two independent Hf^{4+} ions is surrounded by seven S atoms forming a distorted pentagonal bipyramid. The HfS_{7} polyhedra are connected by an unusual edge- and corner-sharing arrangement of $\left[\mathrm{P}_{2} \mathrm{~S}_{7}\right]$ groups and edge-sharing $\left[\mathrm{PS}_{4}\right]$ tetrahedra into the final double-layered anion.

Comment

Until now, only a few quaternary alkali metal thiophosphates of group 4 metals have been structurally characterized (Cieren et al., 1994; Do et al., 1996; Derstroff et al., 2002). All quaternary compounds contain titanium as the transition metal. In our investigations of the $A-M-\mathrm{P}-\mathrm{S}$ family ($A=$ alkali metal and $M=$ group 4 metal), we prepared very recently the first quaternary zirconium thiophosphates, viz. $A_{3} \mathrm{Zr}_{2} \mathrm{P}_{5} \mathrm{~S}_{18}(A$ $=\mathrm{Rb}, \mathrm{Cs}$) (Gutzmann et al., 2004), enhancing the range of structures of the $A-M-\mathrm{P}-\mathrm{S}$ family. One interesting observetion made in the past was that the ternary thiophosphates $M \mathrm{P}_{2} \mathrm{~S}_{6}$ with $M=\mathrm{Ti}, \mathrm{Zr}$ and Hf are not isostructural (Jandali et al., 1980; Simon et al., 1982, 1985; Lott et al., 1999). This observation was also made in the quaternary thiophosphates with the general formula $A_{3} M_{2} \mathrm{P}_{5} \mathrm{~S}_{18}$, where the Ti compound is structurally quite different from the Zr compound. In our effort to investigate and determine the relationships between the cation size, the $M: S$ ratio and the dimensionality of the structures in group 4 metal thiophosphates, we have obtained the new compound $\mathrm{Cs}_{3} \mathrm{Hf}_{2} \mathrm{P}_{5} \mathrm{~S}_{18}$, which is isostructural with the Zr compound.

The crystal structure of $\mathrm{Cs}_{3} \mathrm{Hf}_{2} \mathrm{P}_{5} \mathrm{~S}_{18}$ is built up of $\left[\mathrm{Hf}_{2} \mathrm{P}_{5} \mathrm{~S}_{18}\right]^{3-}$ layers extending in the (001) plane and charge-

Figure 1
The crystal structure of $\mathrm{Cs}_{3} \mathrm{Hf}_{2} \mathrm{P}_{5} \mathrm{~S}_{18}$, viewed in the direction of the crystallographic a axis.

Received 13 January 2004 Accepted 5 February 2004 Online 14 February 2004

Figure 2
Interconnection of the two distinct HfS_{7} polyhedra via pentadentate [$\left.\mathrm{P}_{2} \mathrm{~S}_{7}\right]$ groups.
compensating Cs^{+}cations. The main feature of this structure type is the presence of HfS_{7} polyhedra which are interconnected via pentadentate $\left[\mathrm{P}_{2} \mathrm{~S}_{7}\right]$ groups and tetradentate $\left[\mathrm{PS}_{4}\right]$ tetrahedra into a double-layered structure. Each of the two distinct Hf^{4+} ions is surrounded by seven S atoms forming a distorted pentagonal bipyramid. The mean $\mathrm{Hf}-\mathrm{S}$ bond lengths of $2.617(5) \AA$ in the $\mathrm{Hf}_{1} \mathrm{~S}_{7}$ polyhedron and 2.621 (5) \AA for $\mathrm{Hf}_{2} \mathrm{~S}_{7}$ are in good agreement with the sum of the ionic radii [$1.84 \AA$ for S^{2-} and $0.76 \AA$ for $\mathrm{Hf}^{4+}(\mathrm{CN} 7)$; Shannon, 1976]. The $\mathrm{Hf} 1 \mathrm{~S}_{7}$ and $\mathrm{Hf}_{2} \mathrm{~S}_{7}$ polyhedra are linked via one $\left[\mathrm{P}_{2} \mathrm{~S}_{7}\right]$ group that acts in an unusual pentadentate fashion. Each of the HfS_{7} groups shares two common edges and one corner with two symmetry-related $\left[\mathrm{P}_{2} \mathrm{~S}_{7}\right]$ units. Furthermore, the $\mathrm{Hf}_{1} \mathrm{~S}_{7}$ and $\mathrm{Hf} 2 \mathrm{~S}_{7}$ polyhedra are interconnected via tetradentate $\left[\mathrm{PS}_{4}\right]$ tetrahedra into the final double-layered structure. The average $\mathrm{P}-\mathrm{S}$ distances in the two unique pyrothiophosphate ligands and the $\left[\mathrm{PS}_{4}\right]$ tetrahedra are 2.050 , 2.052 and $2.038 \AA$. The longest $\mathrm{P}-\mathrm{S}$ bonds in the $\left[\mathrm{P}_{2} \mathrm{~S}_{7}\right]$ groups are observed for S atoms having bonds to two P atoms. The $\mathrm{S}-\mathrm{P}-\mathrm{S}$ angles in the thiophosphate ligands exhibit a significant distortion. The three crystallographically independent Cs^{+}cations are surrounded either by nine S atoms (average Cs1-S distance $3.739 \AA$ and average Cs3-S distance $3.735 \AA$) or by ten S atoms (average Cs $2-S$ distance $3.780 \AA$); these distances agree well with the sum of the ionic radii. The charge balance of the compound may be formulated as $\left[\mathrm{Cs}^{+}\right]_{3}\left[\mathrm{Hf}^{4+}\right]_{2}\left[\mathrm{PS}_{4}{ }^{3-}\right]\left[\mathrm{P}_{2} \mathrm{~S}_{7}{ }^{4-}\right]_{2}$.

Experimental

The compound $\mathrm{Cs}_{3} \mathrm{Hf}_{2} \mathrm{P}_{5} \mathrm{~S}_{18}$ was obtained by the reaction of $\mathrm{Cs}_{2} \mathrm{~S}_{3}$ $(0.3 \mathrm{mmol}), \mathrm{HfS}_{2}(0.15 \mathrm{mmol}), \mathrm{P}_{2} \mathrm{~S}_{5}(0.45 \mathrm{mmol})$ and $\mathrm{S}(1.5 \mathrm{mmol})$. $\mathrm{Cs}_{2} \mathrm{~S}_{3}$ was prepared from stoichiometric amounts of Cs and S in liquid ammonia under an argon atmosphere. The starting materials were loaded into a quartz tube which was evacuated ($10^{-3} \mathrm{mbar}$) and flame-sealed. The ampoule was heated to 873 K within 24 h . After 4 d , the sample was cooled down to $523 \mathrm{~K}^{\text {at }} 2 \mathrm{~K} \mathrm{~h}^{-1}$ and then to
room temperature within 10 h . To remove unreacted $\mathrm{Cs}_{x} \mathrm{P}_{y} \mathrm{~S}_{z}$, the resultant melt was washed with dry N, N-dimethylformamide and diethyl ether. The product was dried in a vacuum and consisted of light-yellow plate-like crystals which are air- and moisture-sensitive.

Crystal data

$\mathrm{Cs}_{3} \mathrm{Hf}_{2}\left(\mathrm{P}_{2} \mathrm{~S}_{7}\right)_{2}\left(\mathrm{PS}_{4}\right)$
$M_{r}=1487.64$
Monoclinic, $C c$ 。
$a=9.3168$ (4) Å
$b=9.8985$ (6) \AA
$c=34.0830(17) \AA$
$\beta=94.236(6)^{\circ}$
$V=3134.6(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=3.152 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 8000 \\
& \quad \text { reflections } \\
& \theta=1.3-23.3^{\circ} \\
& \mu=11.51 \mathrm{~mm}^{-1} \\
& T=180(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.2 \times 0.2 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS diffractometer
φ scans
Absorption correction: numerical
(X-SHAPE and X-RED32;
Stoe \& Cie, 1998)
$T_{\text {min }}=0.120, T_{\text {max }}=0.312$
9627 measured reflections
4211 independent reflections
4119 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=23.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.104$
$S=1.15$
4211 reflections
254 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0238 P)^{2}\right.$
$+298.6042 P]$

$$
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.82 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.87 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00031 (3)
Absolute structure: Flack (1983)
Flack parameter $=0.010$ (13); 2064 Friedel pairs

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Hf1-S7	2.554 (5)	P1-S4	2.172 (8)
Hf1-S6 ${ }^{\text {i }}$	2.586 (5)	P2-S7	2.023 (7)
Hf1-S9	2.604 (5)	P2-S5	2.039 (7)
Hf1-S8	2.615 (5)	P2-S6	2.046 (7)
Hf1-S3	2.618 (5)	P2-S4	2.115 (7)
Hf1-S2	2.632 (5)	P3-S9	2.017 (7)
Hf1-S5 ${ }^{\text {i }}$	2.713 (5)	P3-S10	2.037 (7)
Hf2-S14 ${ }^{\text {ii }}$	2.570 (5)	P3-S8	2.047 (7)
Hf2-S13	2.574 (5)	P3-S11	2.051 (7)
Hf2-S11	2.597 (5)	P4-S14	2.028 (8)
Hf2 - S16 $6^{\text {ii }}$	2.611 (5)	P4-S12	2.031 (7)
Hf2-S17 ${ }^{\text {ii }}$	2.640 (5)	P4-S13	2.045 (7)
Hf2-S10	2.644 (5)	P4-S15	2.132 (7)
Hf2-S12	2.712 (5)	P5-S18	1.982 (8)
P1-S1	1.969 (8)	P5-S17	2.014 (8)
P1-S2	2.010 (7)	P5-S16	2.024 (7)
P1-S3	2.032 (8)	P5-S15	2.160 (8)
S1-P1-S2	119.8 (3)	S9-P3-S11	113.0 (3)
S1-P1-S3	116.4 (4)	S10-P3-S11	103.0 (3)
S2-P1-S3	101.9 (3)	S8-P3-S11	111.6 (3)
S1-P1-S4	103.4 (3)	S14-P4-S12	107.1 (3)
S2-P1-S4	105.1 (3)	S14-P4-S13	115.0 (3)
S3-P1-S4	109.6 (3)	S12-P4-S13	107.2 (3)
S7-P2-S5	105.7 (3)	S14-P4-S15	112.9 (3)
S7-P2-S6	115.8 (3)	S12-P4-S15	107.1 (3)
S5-P2-S6	108.2 (3)	S13-P4-S15	107.1 (3)
S7-P2-S4	113.3 (3)	S18-P5-S17	119.1 (3)
S5-P2-S4	106.2 (3)	S18-P5-S16	115.1 (3)
S6-P2-S4	107.1 (3)	S17-P5-S16	101.8 (3)
S9-P3-S10	114.0 (3)	S18-P5-S15	103.6 (3)
S9-P3-S8	103.6 (3)	S17-P5-S15	106.6 (3)
S10-P3-S8	111.9 (3)	S16-P5-S15	110.4 (3)

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}+y, z$; (ii) $x-\frac{1}{2}, y-\frac{1}{2}, z$

Figure 3
Perspective view of the asymmetric unit of the title compound with the atomic labeling. Ellipsoids are drawn at the 50% probability level.

The absolute structure was determined and, according to the Flack x test, is in agreement with the selected setting. In addition, refinement of the inverse structure leads to significantly poorer reliability factors (R for all $4119 F_{o}>4 \sigma\left(F_{o}\right)=0.071 ; w R$ for all reflections $=$ $0.169)$.

Data collection: IPDS Program Package (Stoe \& Cie, 1998); cell refinement: IPDS Program Package; data reduction: IPDS Program Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); soft-
ware used to prepare material for publication: CIFTAB in SHELXTL (Bruker, 1998).

Financial support by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Cieren, X., Angenault, J., Couturier, J.-C. \& Quarton, M. (1994). Powder Diffr. 9, 105-107.
Derstroff, V., Tremel, W., Regelsky, G., Schmedt auf der Günne, J. \& Eckert, H. (2002). Solid State Sci. 4, 731-745.

Do, J., Lee, K. \& Yun, H. (1996). J. Solid State Chem. 125, 30-36.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gutzmann, A., Näther, C. \& Bensch, W. (2004). Solid State Sci. In the press.
Jandali, M. Z., Eulenberger, G. \& Hahn, H. (1980). Z. Anorg. Allg. Chem. 470, 39-44.
Lott, D. R., Fincher, T., LeBret, G. C., Cleary, D. A. \& Breneman, G. L. (1999). J. Solid State Chem. 143, 239-245.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Simon, A., Hahn, H. \& Peters, K. (1985). Z. Naturforsch. Teil B, 40, 730-732.
Simon, A., Peters, K., Peters, E.-M. \& Hahn, H. (1982). Z. Anorg. Allg. Chem. 491, 295-300.
Stoe \& Cie (1998). IPDS Program Package (Version 2.89), X-SHAPE (Version 1.03) and X-RED32 (Version 1.03). Stoe \& Cie, Darmstadt, Germany.

